NKCTF RE

Login System

第一部分

先运行运行发现要先过一下username才能输入pass,ida看一下,可以发现是一个z3:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
from z3 import *

def solve_sub_1229():
a1 = [Int(f'a1_{i}') for i in range(16)]
s = Solver()

s.add(a1[2] + a1[1] + a1[0] + a1[3] == 447)
s.add(101 * a1[2] + a1[0] + 9 * a1[1] + 8 * a1[3] == 12265)
s.add(5 * a1[2] + 3 * a1[0] + 4 * a1[1] + 6 * a1[3] == 2000)
s.add(88 * a1[2] + 12 * a1[0] + 11 * a1[1] + 87 * a1[3] == 21475)
s.add(a1[6] + 59 * a1[5] + 100 * a1[4] + a1[7] == 7896)
s.add(443 * a1[4] + 200 * a1[5] + 10 * a1[6] + 16 * a1[7] == 33774)
s.add(556 * a1[5] + 333 * a1[4] + 8 * a1[6] + 7 * a1[7] == 44758)
s.add(a1[6] + a1[5] + 202 * a1[4] + a1[7] == 9950)
s.add(78 * a1[10] + 35 * a1[9] + 23 * a1[8] + 89 * a1[11] == 24052)
s.add(78 * a1[8] + 59 * a1[9] + 15 * a1[10] + 91 * a1[11] == 25209)
s.add(111 * a1[10] + 654 * a1[9] + 123 * a1[8] + 222 * a1[11] == 113427)
s.add(6 * a1[9] + 72 * a1[8] + 5 * a1[10] + 444 * a1[11] == 54166)
s.add(56 * a1[14] + 35 * a1[12] + 6 * a1[13] + 121 * a1[15] == 11130)
s.add(169 * a1[14] + 158 * a1[13] + 98 * a1[12] + 124 * a1[15] == 27382)
s.add(147 * a1[13] + 65 * a1[12] + 131 * a1[14] + 129 * a1[15] == 23564)
s.add(137 * a1[14] + 132 * a1[13] + 620 * a1[12] + 135 * a1[15] == 51206)

if s.check() == sat:
m = s.model()
return [m[a1[i]].as_long() for i in range(16)]
else:
return None

data = solve_sub_1229()
print(data) #[117, 115, 101, 114, 48, 49, 95, 110, 107, 99, 116, 102, 50, 48, 50, 52]

data = [117, 115, 101, 114, 48, 49, 95, 110, 107, 99, 116, 102, 50, 48, 50, 52]
name = ''
for i in range(len(data)):
name += ''.join(chr(data[i]))
print(name) #user01_nkctf2024

第二部分

然后接着看一下代码,发现pass被分成两部分第一部分是08位,第二部分是1025,第九位是”_”用来分开这两个部分

前面9位是一个简单的异或:

1
2
3
4
5
6
7
8
9
10
11
key1 = [0x7E, 0x5A, 0x6E, 0x77, 0x3A, 0x79, 0x35, 0x76, 0x7C]
dest = [0] * 9

for i in range(9):
dest[i] = (key1[i] - 9 + i) ^ i
print(dest) #[117, 83, 101, 114, 49, 112, 52, 115, 115]

name = ''
for i in range(len(dest)):
name += ''.join(chr(dest[i]))
print(name) #uSer1p4ss

后面的部分是一个AES加密不过是逆了S盒的,网上找一个大佬写的AES标准解密代码把逆S盒替换即可:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
#include <stdint.h>
#include <stdio.h>
#include <string.h>

typedef struct {
uint32_t eK[44], dK[44]; // encKey, decKey
int Nr; // 10 rounds
}AesKey;

#define BLOCKSIZE 16 //AES-128分组长度为16字节

// uint8_t y[4] -> uint32_t x
#define LOAD32H(x, y) \
do { (x) = ((uint32_t)((y)[0] & 0xff)<<24) | ((uint32_t)((y)[1] & 0xff)<<16) | \
((uint32_t)((y)[2] & 0xff)<<8) | ((uint32_t)((y)[3] & 0xff));} while(0)

// uint32_t x -> uint8_t y[4]
#define STORE32H(x, y) \
do { (y)[0] = (uint8_t)(((x)>>24) & 0xff); (y)[1] = (uint8_t)(((x)>>16) & 0xff); \
(y)[2] = (uint8_t)(((x)>>8) & 0xff); (y)[3] = (uint8_t)((x) & 0xff); } while(0)

// 从uint32_t x中提取从低位开始的第n个字节
#define BYTE(x, n) (((x) >> (8 * (n))) & 0xff)

/* used for keyExpansion */
// 字节替换然后循环左移1位
#define MIX(x) (((S[BYTE(x, 2)] << 24) & 0xff000000) ^ ((S[BYTE(x, 1)] << 16) & 0xff0000) ^ \
((S[BYTE(x, 0)] << 8) & 0xff00) ^ (S[BYTE(x, 3)] & 0xff))

// uint32_t x循环左移n位
#define ROF32(x, n) (((x) << (n)) | ((x) >> (32-(n))))
// uint32_t x循环右移n位
#define ROR32(x, n) (((x) >> (n)) | ((x) << (32-(n))))

/* for 128-bit blocks, Rijndael never uses more than 10 rcon values */
// AES-128轮常量
static const uint32_t rcon[10] = {
0x01000000UL, 0x02000000UL, 0x04000000UL, 0x08000000UL, 0x10000000UL,
0x20000000UL, 0x40000000UL, 0x80000000UL, 0x1B000000UL, 0x36000000UL
};
// S盒
unsigned char S[256] = {
0x31, 0x52, 0x5A, 0xC8, 0x0B, 0xAC, 0xF3, 0x3A, 0x8B, 0x54, 0x27, 0x9B, 0xAB, 0x95, 0xDE, 0x83, 0x60, 0xCB, 0x53, 0x7F, 0xC4, 0xE3, 0x0A, 0x97, 0xE0, 0x29, 0xD5, 0x68, 0xC5, 0xDF, 0xF4, 0x7B, 0xAA, 0xD6, 0x42, 0x78, 0x6C, 0xE9, 0x70, 0x17, 0xD7, 0x37, 0x24, 0x49, 0x75, 0xA9, 0x89, 0x67, 0x03, 0xFA, 0xD9, 0x91, 0xB4, 0x5B, 0xC2, 0x4E, 0x92, 0xFC, 0x46, 0xB1, 0x73, 0x08, 0xC7, 0x74, 0x09, 0xAF, 0xEC, 0xF5, 0x4D, 0x2D, 0xEA, 0xA5, 0xDA, 0xEF, 0xA6, 0x2B, 0x7E, 0x0C, 0x8F, 0xB0, 0x04, 0x06, 0x62, 0x84, 0x15, 0x8E, 0x12, 0x1D, 0x44, 0xC0, 0xE2, 0x38, 0xD4, 0x47, 0x28, 0x45, 0x6E, 0x9D, 0x63, 0xCF, 0xE6, 0x8C, 0x18, 0x82, 0x1B, 0x2C, 0xEE, 0x87, 0x94, 0x10, 0xC1, 0x20, 0x07, 0x4A, 0xA4, 0xEB, 0x77, 0xBC, 0xD3, 0xE1, 0x66, 0x2A, 0x6B, 0xE7, 0x79, 0xCC, 0x86, 0x16, 0xD0, 0xD1, 0x19, 0x55, 0x3C, 0x9F, 0xFB, 0x30, 0x98, 0xBD, 0xB8, 0xF1, 0x9E, 0x61, 0xCD, 0x90, 0xCE, 0x7C, 0x8D, 0x57, 0xAE, 0x6A, 0xB3, 0x3D, 0x76, 0xA7, 0x71, 0x88, 0xA2, 0xBA, 0x4F, 0x3E, 0x40, 0x64, 0x0F, 0x48, 0x21, 0x35, 0x36, 0x2F, 0xE8, 0x14, 0x5D, 0x51, 0xD8, 0xB5, 0xFE, 0xD2, 0x96, 0x93, 0xA1, 0xB6, 0x43, 0x0D, 0x4C, 0x80, 0xC9, 0xFF, 0xA3, 0xDD, 0x72, 0x05, 0x59, 0xBF, 0x0E, 0x26, 0x34, 0x1F, 0x13, 0xE5, 0xDC, 0xF2, 0xC6, 0x50, 0x1E, 0xE4, 0x85, 0xB7, 0x39, 0x8A, 0xCA, 0xED, 0x9C, 0xBB, 0x56, 0x23, 0x1A, 0xF0, 0x32, 0x58, 0xB2, 0x65, 0x33, 0x6F, 0x41, 0xBE, 0x3F, 0x6D, 0x11, 0x00, 0xAD, 0x5F, 0xC3, 0x81, 0x25, 0xA8, 0xA0, 0x9A, 0xF6, 0xF7, 0x5E, 0x99, 0x22, 0x2E, 0x4B, 0xF9, 0x3B, 0x02, 0x7A, 0xB9, 0x5C, 0x69, 0xF8, 0x1C, 0xDB, 0x01, 0x7D, 0xFD
};

//逆S盒
unsigned char inv_S[256] = {
227, 253, 245, 48, 80, 189, 81, 112, 61, 64, 22, 4, 77, 181, 192, 162, 109, 226, 86, 196, 169, 84, 127, 39, 102, 130, 214, 104, 251, 87, 202, 195, 111, 164, 240, 213, 42, 232, 193, 10, 94, 25, 121, 75, 105, 69, 241, 167, 135, 0, 216, 220, 194, 165, 166, 41, 91, 206, 7, 244, 132, 151, 159, 224, 160, 222, 34, 180, 88, 95, 58, 93, 163, 43, 113, 242, 182, 68, 55, 158, 201, 171, 1, 18, 9, 131, 212, 147, 217, 190, 2, 53, 248, 170, 238, 229, 16, 141, 82, 98, 161, 219, 120, 47, 27, 249, 149, 122, 36, 225, 96, 221, 38, 154, 188, 60, 63, 44, 152, 116, 35, 124, 246, 31, 145, 254, 76, 19, 183, 231, 103, 15, 83, 204, 126, 107, 155, 46, 207, 8, 101, 146, 85, 78, 143, 51, 56, 177, 108, 13, 176, 23, 136, 239, 235, 11, 210, 97, 140, 133, 234, 178, 156, 186, 114, 71, 74, 153, 233, 45, 32, 12, 5, 228, 148, 65, 79, 59, 218, 150, 52, 173, 179, 205, 138, 247, 157, 211, 117, 137, 223, 191, 89, 110, 54, 230, 20, 28, 200, 62, 3, 184, 208, 17, 125, 142, 144, 99, 128, 129, 175, 118, 92, 26, 33, 40, 172, 50, 72, 252, 198, 187, 14, 29, 24, 119, 90, 21, 203, 197, 100, 123, 168, 37, 70, 115, 66, 209, 106, 73, 215, 139, 199, 6, 30, 67, 236, 237, 250, 243, 49, 134, 57, 255, 174, 185
};

/* copy in[16] to state[4][4] */
int loadStateArray(uint8_t(*state)[4], const uint8_t* in) {
for (int i = 0; i < 4; ++i) {
for (int j = 0; j < 4; ++j) {
state[j][i] = *in++;
}
}
return 0;
}

/* copy state[4][4] to out[16] */
int storeStateArray(uint8_t(*state)[4], uint8_t* out) {
for (int i = 0; i < 4; ++i) {
for (int j = 0; j < 4; ++j) {
*out++ = state[j][i];
}
}
return 0;
}
//秘钥扩展
int keyExpansion(const uint8_t* key, uint32_t keyLen, AesKey* aesKey) {

if (NULL == key || NULL == aesKey) {
printf("keyExpansion param is NULL\n");
return -1;
}

if (keyLen != 16) {
printf("keyExpansion keyLen = %d, Not support.\n", keyLen);
return -1;
}

uint32_t* w = aesKey->eK; //加密秘钥
uint32_t* v = aesKey->dK; //解密秘钥

/* keyLen is 16 Bytes, generate uint32_t W[44]. */

/* W[0-3] */
for (int i = 0; i < 4; ++i) {
LOAD32H(w[i], key + 4 * i);
}

/* W[4-43] */
for (int i = 0; i < 10; ++i) {
w[4] = w[0] ^ MIX(w[3]) ^ rcon[i];
w[5] = w[1] ^ w[4];
w[6] = w[2] ^ w[5];
w[7] = w[3] ^ w[6];
w += 4;
}

w = aesKey->eK + 44 - 4;
//解密秘钥矩阵为加密秘钥矩阵的倒序,方便使用,把ek的11个矩阵倒序排列分配给dk作为解密秘钥
//即dk[0-3]=ek[41-44], dk[4-7]=ek[37-40]... dk[41-44]=ek[0-3]
for (int j = 0; j < 11; ++j) {

for (int i = 0; i < 4; ++i) {
v[i] = w[i];
}
w -= 4;
v += 4;
}

return 0;
}

// 轮秘钥加
int addRoundKey(uint8_t(*state)[4], const uint32_t* key) {
uint8_t k[4][4];

/* i: row, j: col */
for (int i = 0; i < 4; ++i) {
for (int j = 0; j < 4; ++j) {
k[i][j] = (uint8_t)BYTE(key[j], 3 - i); /* 把 uint32 key[4] 先转换为矩阵 uint8 k[4][4] */
state[i][j] ^= k[i][j];
}
}

return 0;
}

//字节替换
int subBytes(uint8_t(*state)[4]) {
/* i: row, j: col */
for (int i = 0; i < 4; ++i) {
for (int j = 0; j < 4; ++j) {
state[i][j] = S[state[i][j]]; //直接使用原始字节作为S盒数据下标
}
}

return 0;
}

//逆字节替换
int invSubBytes(uint8_t(*state)[4]) {
/* i: row, j: col */
for (int i = 0; i < 4; ++i) {
for (int j = 0; j < 4; ++j) {
state[i][j] = inv_S[state[i][j]];
}
}
return 0;
}

//行移位
int shiftRows(uint8_t(*state)[4]) {
uint32_t block[4] = { 0 };

/* i: row */
for (int i = 0; i < 4; ++i) {
//便于行循环移位,先把一行4字节拼成uint_32结构,移位后再转成独立的4个字节uint8_t
LOAD32H(block[i], state[i]);
block[i] = ROF32(block[i], 8 * i);
STORE32H(block[i], state[i]);
}

return 0;
}

//逆行移位
int invShiftRows(uint8_t(*state)[4]) {
uint32_t block[4] = { 0 };

/* i: row */
for (int i = 0; i < 4; ++i) {
LOAD32H(block[i], state[i]);
block[i] = ROR32(block[i], 8 * i);
STORE32H(block[i], state[i]);
}

return 0;
}

/* Galois Field (256) Multiplication of two Bytes */
// 两字节的伽罗华域乘法运算
uint8_t GMul(uint8_t u, uint8_t v) {
uint8_t p = 0;

for (int i = 0; i < 8; ++i) {
if (u & 0x01) { //
p ^= v;
}

int flag = (v & 0x80);
v <<= 1;
if (flag) {
v ^= 0x1B; /* x^8 + x^4 + x^3 + x + 1 */
}

u >>= 1;
}

return p;
}

// 列混合
int mixColumns(uint8_t(*state)[4]) {
uint8_t tmp[4][4];
uint8_t M[4][4] = { {0x02, 0x03, 0x01, 0x01},
{0x01, 0x02, 0x03, 0x01},
{0x01, 0x01, 0x02, 0x03},
{0x03, 0x01, 0x01, 0x02} };

/* copy state[4][4] to tmp[4][4] */
for (int i = 0; i < 4; ++i) {
for (int j = 0; j < 4; ++j) {
tmp[i][j] = state[i][j];
}
}

for (int i = 0; i < 4; ++i) {
for (int j = 0; j < 4; ++j) { //伽罗华域加法和乘法
state[i][j] = GMul(M[i][0], tmp[0][j]) ^ GMul(M[i][1], tmp[1][j])
^ GMul(M[i][2], tmp[2][j]) ^ GMul(M[i][3], tmp[3][j]);
}
}

return 0;
}

// 逆列混合
int invMixColumns(uint8_t(*state)[4]) {
uint8_t tmp[4][4];
uint8_t M[4][4] = { {0x0E, 0x0B, 0x0D, 0x09},
{0x09, 0x0E, 0x0B, 0x0D},
{0x0D, 0x09, 0x0E, 0x0B},
{0x0B, 0x0D, 0x09, 0x0E} }; //使用列混合矩阵的逆矩阵

/* copy state[4][4] to tmp[4][4] */
for (int i = 0; i < 4; ++i) {
for (int j = 0; j < 4; ++j) {
tmp[i][j] = state[i][j];
}
}

for (int i = 0; i < 4; ++i) {
for (int j = 0; j < 4; ++j) {
state[i][j] = GMul(M[i][0], tmp[0][j]) ^ GMul(M[i][1], tmp[1][j])
^ GMul(M[i][2], tmp[2][j]) ^ GMul(M[i][3], tmp[3][j]);
}
}

return 0;
}

// AES-128加密接口,输入key应为16字节长度,输入长度应该是16字节整倍数,
// 这样输出长度与输入长度相同,函数调用外部为输出数据分配内存
int aesEncrypt(const uint8_t* key, uint32_t keyLen, const uint8_t* pt, uint8_t* ct, uint32_t len) {

AesKey aesKey;
uint8_t* pos = ct;
const uint32_t* rk = aesKey.eK; //解密秘钥指针
uint8_t out[BLOCKSIZE] = { 0 };
uint8_t actualKey[16] = { 0 };
uint8_t state[4][4] = { 0 };

if (NULL == key || NULL == pt || NULL == ct) {
printf("param err.\n");
return -1;
}

if (keyLen > 16) {
printf("keyLen must be 16.\n");
return -1;
}

if (len % BLOCKSIZE) {
printf("inLen is invalid.\n");
return -1;
}

memcpy(actualKey, key, keyLen);
keyExpansion(actualKey, 16, &aesKey); // 秘钥扩展

// 使用ECB模式循环加密多个分组长度的数据
for (int i = 0; i < len; i += BLOCKSIZE) {
// 把16字节的明文转换为4x4状态矩阵来进行处理
loadStateArray(state, pt);
// 轮秘钥加
addRoundKey(state, rk);

for (int j = 1; j < 10; ++j) {
rk += 4;
subBytes(state); // 字节替换
shiftRows(state); // 行移位
mixColumns(state); // 列混合
addRoundKey(state, rk); // 轮秘钥加
}

subBytes(state); // 字节替换
shiftRows(state); // 行移位
// 此处不进行列混合
addRoundKey(state, rk + 4); // 轮秘钥加

// 把4x4状态矩阵转换为uint8_t一维数组输出保存
storeStateArray(state, pos);

pos += BLOCKSIZE; // 加密数据内存指针移动到下一个分组
pt += BLOCKSIZE; // 明文数据指针移动到下一个分组
rk = aesKey.eK; // 恢复rk指针到秘钥初始位置
}
return 0;
}

// AES128解密, 参数要求同加密
int aesDecrypt(const uint8_t* key, uint32_t keyLen, const uint8_t* ct, uint8_t* pt, uint32_t len) {
AesKey aesKey;
uint8_t* pos = pt;
const uint32_t* rk = aesKey.dK; //解密秘钥指针
uint8_t out[BLOCKSIZE] = { 0 };
uint8_t actualKey[16] = { 0 };
uint8_t state[4][4] = { 0 };

if (NULL == key || NULL == ct || NULL == pt) {
printf("param err.\n");
return -1;
}

if (keyLen > 16) {
printf("keyLen must be 16.\n");
return -1;
}

if (len % BLOCKSIZE) {
printf("inLen is invalid.\n");
return -1;
}

memcpy(actualKey, key, keyLen);
keyExpansion(actualKey, 16, &aesKey); //秘钥扩展,同加密

for (int i = 0; i < len; i += BLOCKSIZE) {
// 把16字节的密文转换为4x4状态矩阵来进行处理
loadStateArray(state, ct);
// 轮秘钥加,同加密
addRoundKey(state, rk);

for (int j = 1; j < 10; ++j) {
rk += 4;
invShiftRows(state); // 逆行移位
invSubBytes(state); // 逆字节替换,这两步顺序可以颠倒
addRoundKey(state, rk); // 轮秘钥加,同加密
invMixColumns(state); // 逆列混合
}

invSubBytes(state); // 逆字节替换
invShiftRows(state); // 逆行移位
// 此处没有逆列混合
addRoundKey(state, rk + 4); // 轮秘钥加,同加密

storeStateArray(state, pos); // 保存明文数据
pos += BLOCKSIZE; // 输出数据内存指针移位分组长度
ct += BLOCKSIZE; // 输入数据内存指针移位分组长度
rk = aesKey.dK; // 恢复rk指针到秘钥初始位置
}
return 0;
}

#include <stdio.h>
// 方便输出16进制数据
void printHex(uint8_t* ptr, int len, char* tag) {
printf("%s\ndata[%d]: ", tag, len);
for (int i = 0; i < len; ++i) {
printf("%.2X ", *ptr++);
}
printf("\n");
}

int main() {

// case 1
const uint8_t key[16] = { 0x2b, 0x7e, 0x15, 0x16, 0x28, 0xae, 0xd2, 0xa6, 0xab, 0xf7, 0x15, 0x88, 0x09, 0xcf, 0x4f, 0x3c };
const uint8_t pt[16] = { 0x32, 0x43, 0xf6, 0xa8, 0x88, 0x5a, 0x30, 0x8d, 0x31, 0x31, 0x98, 0xa2, 0xe0, 0x37, 0x07, 0x34 };
uint8_t ct[16] = { 0 }; // 外部申请输出数据内存,用于加密后的数据
uint8_t plain[16] = { 0 }; // 外部申请输出数据内存,用于解密后的数据

//aesEncrypt(key, 16, pt, ct, 16); // 加密
//printHex(pt, 16, "plain data:"); // 打印初始明文数据
//printf("expect cipher:\n39 25 84 1D 02 DC 09 FB DC 11 85 97 19 6A 0B 32\n"); // 正常解密后的数据内容

//printHex(ct, 16, "after encryption:"); // 打印加密后的密文

//aesDecrypt(key, 16, ct, plain, 16); // 解密
//printHex(plain, 16, "after decryption:"); // 打印解密后的明文数据

// case 2
// 16字节字符串形式秘钥
const uint8_t key2[] = "user01_nkctf2024";
// 32字节长度字符串明文
const uint8_t* data = (uint8_t*)"abcdefghijklmnopqrstuvwxyz123456";
uint8_t last[16] = { 0xB0, 0xCC, 0x93, 0xEA, 0xE9, 0x2F, 0xEF, 0x56, 0x99, 0x39, 0x6E, 0x02, 0x3B, 0x4F, 0x9E, 0x42 };
uint8_t ct2[32] = { 0 }; //外部申请输出数据内存,用于存放加密后数据
uint8_t plain2[32] = { 0 }; //外部申请输出数据内存,用于存放解密后数据
//加密32字节明文
aesEncrypt(key2, 16, data, ct2, 32);

printf("\nplain text:\n%s\n", data);
printf("expect ciphertext:\nfcad715bd73b5cb0488f840f3bad7889\n");
printHex(ct2, 32, "after encryption:");

// 解密32字节密文
aesDecrypt(key2, 16, last, plain2, 16);
// 打印16进制形式的解密后的明文
printHex(plain2, 32, "after decryption:");

// 因为加密前的数据为可见字符的字符串,打印解密后的明文字符,与加密前明文进行对比
printf("output plain text\n");
for (int i = 0; i < 32; ++i) {
printf("%c", plain2[i]);
}

return 0;
}

input:

1
9ee779cd2abcde48

所以最后的pass:

1
uSer1p4ss_9ee779cd2abcde48

flag:

1
NKCTF{2961bba0add6265ba83bc6198e0ec758}

REEZ

第一部分

拖进IDA看,发现是创建了应该文件,对文件进行了一些操作,我们直接下断点,dump下来,然后我们就得到了一个新的文件。

第二部分

把dump下来的文件(output.bin)拖进IDA,发现可以z3直接解,不过要先去控制流平坦化的混淆,直接D810去混淆,然后写z3:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
from z3 import *
flag = [BitVec('flag[%d]' % i, 8) for i in range(25)]
out = [0] * 200
byte_2010 = [0x00000000, 0xFFFFFFFE, 0xFFFFFFFF, 0x00000004, 0x00000001, 0xFFFFFFFF, 0x00000001, 0x00000000, 0x00000000, 0xFFFFFFFF, 0xFFFFFFFD, 0xFFFFFFFE, 0x00000000, 0xFFFFFFF6, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFE, 0x00000001, 0xFFFFFFF3, 0xFFFFFFFF, 0xFFFFFFFA, 0xFFFFFFFF, 0xFFFFFFFE, 0x00000001, 0xFFFFFFFE, 0x00000000, 0x00000000, 0x00000000]
byte_2080 = [0x32, 0x44, 0xAA, 0x56, 0x63, 0x3D, 0x2B, 0x09, 0xCD, 0x34, 0x99, 0x3C, 0x56, 0xB8, 0x99, 0xDE, 0x26, 0x1F, 0x7E, 0x0B, 0x42, 0xC2, 0x1B, 0xEB, 0xF5, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00]
byte_20A0 =[0x44, 0x30, 0x5F, 0x79, 0x30, 0x75, 0x5F, 0x4C, 0x69, 0x6B, 0x65, 0x5F, 0x57, 0x68, 0x61, 0x74, 0x5F, 0x59, 0x6F, 0x75, 0x5F, 0x53, 0x65, 0x65, 0x3F]
for i in range(len(flag)):
out[i] = flag[24 - i]
s = Solver()
out[24] = -105 * (39 * (out[24] + -105 * (39 * (out[13] + -105 * (39 * (out[14] + 3) + 23) + 111) + 23) + 111) + 23)+ 111
out[23] = -105 * (39 * ((out[11] ^ out[10]) + out[23]) + 23) + 111
out[22] = -105 * (39 * (out[22] + -105 * (39 * (out[10] + out[9]) + 23) + 111) + 23) + 111
out[21] = -105 * (39 * ((out[7] ^ 0x17) + out[21]) + 23) + 111
out[20] = -105 * (39 * (out[20] + -105 * (39 * (out[4] + -105 * (39 * (out[15] - 5) + 23) + 111) + 23) + 111) + 23)+ 111
out[19] = -105 * (39 * (out[19] + out[3] - out[1]) + 23) + 111
out[18] = -105 * (39 * (out[18] + -105 * (39 * (out[16] + out[17]) + 23) + 111) + 23) + 111
out[17] = -105 * (39 * (out[17] + -105 * (39 * (out[1] - out[4] + 17) + 23) + 111) + 23) + 111
out[16] = -105 * (39 * (out[16] + (out[5] ^ (-105 * (39 * (out[6] + 1) + 23) + 111))) + 23) + 111
out[15] = -105 * (39 * (out[7] + out[15]) + 23) + 111 - out[8]
out[14] = -105 * (39 * (out[14] + -105 * (39 * (out[10] + out[9]) + 23) + 111) + 23) + 111
out[13] = -105 * (39 * (out[12] + -105 * (39 * (out[11] + -105 * (39 * (out[13] - 7) + 23) + 111) + 23) + 111) + 23)+ 111
out[12] = -105 * (39 * (out[12] + out[13]) + 23) + 111
out[11] = -105 * (39 * (out[11] + (out[17] ^ out[16])) + 23) + 111
out[10] = -105 * (39 * (out[19] + -105 * (39 * (out[20] + -105 * (39 * (out[10] + 12) + 23) + 111) + 23) + 111) + 23)+ 111
out[9] = -105 * (39 * (out[21] + -105 * (39 * (out[9] + 8) + 23) + 111) + 23) + 111
out[8] = -105 * (39 * ((out[22] ^ 0x4D) + out[8]) + 23) + 111
out[7] = -105 * (39 * (out[7] + -105 * (39 * (2 * (out[23] & 0xF9 ^ 0x11) + (out[23] ^ 0xEE)) + 23) + 111) + 23) + 111
out[6] = -105 * (39 * ((out[7] ^ out[9]) + out[6]) + 23) + 111
out[5] = -105 * (39 * (out[12] + -105 * (39 * (out[10] + out[5]) + 23) + 111) + 23) + 111
out[4] = -105 * (39 * (out[4] + out[13]) + 23) + 111
out[3] = -105 * (39 * (out[16] + -105 * (39 * (out[3] + out[18]) + 23) + 111) + 23) + 111
out[2] = -105 * (39 * (out[19] + out[2]) + 23) + 111
out[1] = -105 * (39 * ((out[24] ^ out[22]) + out[1]) + 23) + 111
out[0] = -105 * (39 * (out[0] + -105 * (39 * (out[23] + 24) + 23) + 111) + 23) + 111
for j in range(25):
out[j + 25] = out[24 - j]
v16 = 0
for v14 in range(5):
for v16 in range(5):
v12 = 0
for v11 in range(5):
v8 = -105 * (39 * (v12 + byte_2010[5 * v14 + v11] * out[5 * v11 + 25 + v16]) + 23) + 111
v12 = v8
out[5 * v14 + 57 + v16] = v8




for i in range(25):
s.add(out[i + 57] == byte_2080[i] ^ byte_20A0[i])


for i in range(len(flag)):
s.add(And(flag[i]>31,flag[i]<127))

print(s.check())
while(s.check()==sat):
condition = []
m = s.model()
p=""
for i in range(len(flag)):
p+=chr(int("%s" % (m[flag[i]])))
condition.append(flag[i]!=int("%s" % (m[flag[i]])))
print(p)
s.add(Or(condition))
#NKCTF{THut_1Ss_s@_eAsyhh}